Advertisements
Advertisements
प्रश्न
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
उत्तर
Let I = `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Put -cosx + sin x = t .....(1)
Then
(sin x + cos x) dx= dt
As x → 0, t → -1
Also `x = pi/4`, t → 0
Squaring (1) both sides we get
`cos^2x + sin^2x - 2cosxsinx = t^2`
`=> 1 - sin2x = t^2`
`=> sin 2x =1 - t^2`
Substituting these values, we get
`I = int_(-1)^0 dt/(16+9(1-t^2))`
`= int_(-1)^0 dt/(25 - 9t^2)`
`= 1/9 int_(-1)^0 dt/((5/3)^2 - t^2)`
`= 1/9[1/(2a) log |(a+t)/(a-t)|]_(-1)^0` where a = 5/3
`= 1/9 [3/(2(5)) "" log |(5/3+t)/(5/3-t)|]_(-1)^0`
`= 1/9 [3/10 {log 1 - log 1/4}]^(-1)`
`= 3/90 (-log 1/4) = 1/30 log 4`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int x/(x^2 + 1)"d"x`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.