Advertisements
Advertisements
प्रश्न
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
उत्तर
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
`=∫_(-pi)^pi(cos^2ax+sin^2bx-2cosaxsinbx)dx`
`=∫_(-pi)^picos^2axdx+∫_(-pi)^pisin^2bxdx-∫_(-pi)^pi2cosaxsinbxdx`
`=2∫_(0)^picos^2axdx+2∫_(0)^pisin^2bxdx-0` [ Since cos2ax and sin2bx are even functions and cosaxsinbx is an odd function.]
`=2∫_(0)^pi(1+cos2ax)/2dx+2∫_(0)^pi(1-cos2bx)/2dx`
`=∫_(0)^pi (1+cos2ax) dx+∫_(0)^pi (1−cos2bx) dx`
`=∫_(0)^pi(1+cos2ax+1−cos2bx)dx`
`=∫_(0)^pi(2+cos2ax−cos2bx)dx`
`=2[x]_0^pi +[(sin2ax)/(2a)]_0^pi−[(sin2bx)/(2b)]_0^pi`
`=2π+(sin2aπ)/(2a)−(sin2bπ)/(2b)`
APPEARS IN
संबंधित प्रश्न
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is