मराठी

∫π−π (cos ax−sin bx)2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`

उत्तर

 

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`

`=∫_(-pi)^pi(cos^2ax+sin^2bx-2cosaxsinbx)dx`

`=∫_(-pi)^picos^2axdx+∫_(-pi)^pisin^2bxdx-∫_(-pi)^pi2cosaxsinbxdx`

`=2∫_(0)^picos^2axdx+2∫_(0)^pisin^2bxdx-0` [ Since cos2ax and sin2bx are even functions and cosaxsinbx is an odd function.]

`=2∫_(0)^pi(1+cos2ax)/2dx+2∫_(0)^pi(1-cos2bx)/2dx`

`=∫_(0)^pi (1+cos2ax) dx+∫_(0)^pi (1−cos2bx) dx`

`=∫_(0)^pi(1+cos2ax+1−cos2bx)dx`

`=∫_(0)^pi(2+cos2ax−cos2bx)dx`

`=2[x]_0^pi +[(sin2ax)/(2a)]_0^pi−[(sin2bx)/(2b)]_0^pi`

`=2π+(sin2aπ)/(2a)−(sin2bπ)/(2b)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


`int_0^1 x^2e^x dx` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×