Advertisements
Advertisements
प्रश्न
Evaluate `∫_0^(3/2)|x cosπx|dx`
उत्तर
`int_0^(3/2)|xcospix|dx`
`0<x<1/2`
`0<pix<pi/2rArrcospix>0rArr(xcospix)>0`
`|xcospix|=xcospix`
`1/2<x<3/2`
`pi/2<pix<(3pi)/2rArrcospix<0rArr(xcospix)<0`
`|xcospix|=-xcospix`
`I=int_0^(3/2)|xcospix|dx=int_0^(3/2)xcospix+int_(1/2)^(3/2)-(xcospix)`
`I=int_0^(1/2)xcospix-int_(1/2)^(3/2)xcospix`
`intx(cospix)=x(sinpix)/pi-int(sinpix)/pi`
`=x/pi(sinpix)+(cospix)/pi^2`
`I=[(x/pisinpix)+(cospix)/pi^2]_0^(1/2)-[(x/pisinpix)+(cospix)/pi^2]_(1/2)^(3/2)`
`=[1/pi((1/2)-0)+1/pi^2(0-1)]-[1/pi(3/2(-1)-1/2(1))+1/pi^2(0-0)]`
`=(1/(2pi)-1/pi^2)-((-2)/pi)`
`=(5/(2pi)-1/pi^2)`
`=((5pi-2)/(2pi^2))`
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
`int_0^1 x^2e^x dx` = ______.