Advertisements
Advertisements
प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
उत्तर
`int_0^(pi/2)1/(1+cosx)dx`
Solving the integral without limits,
`int1/(1+cosx)dx`
`=int1/(2cos^2 (x/2))dx`
`=1/2intsec^2 (x/2)dx`
`=1/2[tan(x/2)/(1/2)]+C`
`=tan(x/2)+C`
Substituting the limits,we get
`=[tan(x/2)]_0^(pi/2)`
`=[tan (pi/4)-tan0]`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`