Advertisements
Advertisements
प्रश्न
find `∫_2^4 x/(x^2 + 1)dx`
उत्तर
`∫_2^4 x/(x^2 + 1)dx`
`Put x^2+1=t`
`2xdx=dt`
Now, `1/2∫_5^17 1/tdt`
`⇒1/2log t_5^17`
`⇒1/2(log 17−log 5)`
`⇒1/2log (17/5)`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`