Advertisements
Advertisements
Question
find `∫_2^4 x/(x^2 + 1)dx`
Solution
`∫_2^4 x/(x^2 + 1)dx`
`Put x^2+1=t`
`2xdx=dt`
Now, `1/2∫_5^17 1/tdt`
`⇒1/2log t_5^17`
`⇒1/2(log 17−log 5)`
`⇒1/2log (17/5)`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^1 x(1 - x)^5 "dx" =` ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.