Advertisements
Advertisements
Question
Evaluate: `int x/(x^2 + 1)"d"x`
Options
2log(x2 + 1) + c
`1/2`log(x2 + 1) + c
`"e"^(x^2 + 1) + "c"`
`logx + x^2/2 + "c"`
Solution
`bb(1/2log(x^2 + 1) + c)`
Explanation:
`int x/(x^2 + 1)"d"x`
= `1/2 int "dt"/"t"`
= `1/2 log "t" + "C"`
= `1/2 log (x^2 + 1) + "C"`
Put x2 + 1 = t
2x dx = dt
x dx = `"dt"/2` ...(i)
APPEARS IN
RELATED QUESTIONS
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`