English

For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______. - Mathematics

Advertisements
Advertisements

Question

For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.

Options

  • 4

  • – 4

  • `1/4`

  • `(-1)/4`

MCQ
Fill in the Blanks

Solution

For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is `underlinebb((-1)/4)`.

Explanation:

Curve y2 = 2x3 – 7

Differentiate w.r.t. to 'x'

`2y dy/dx` = 2 × 3x2 – 0

`dy/dx = (3x^2)/y`

`\implies (dy/dx)_((2","  3)) = (3 xx 2^2)/3` = 4

∵ Slope of normal = `(-1)/(dy/dx)_((2","  3))`

= `(-1)/4`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Official

RELATED QUESTIONS

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×