English

Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2) - Mathematics

Advertisements
Advertisements

Question

Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)

Sum

Solution

Given that the equation of the two curves are y2 = 4x  .....(i)

And x2 + y2 – 6x + 1 = 0   .....(ii)

Differentiating (i) w.r.t. x, we get `2y  "dy"/"dx"` = 4

⇒ `"dy"/"dx" = 2/y`

Slope of the tangent at (1, 2)

m1 = `2/2` = 1

Differentiating (ii) w.r.t. x

⇒ `2x + 2y * "dy"/"dx" - 6` = 0

⇒ `2y * "dy"/"dx"` = 6 – 2x

⇒ `"dy"/"dx" = (6 - 2x)/(2y)`

∴ Slope of the tangent at the same point (1, 2)

⇒ m2 = `(6 - 2 xx 1)/(2 xx 2)`

= `4/4`

= 1

We see that m1 = m2 = 1 at the point (1, 2).

Hence, the given circles touch each other at the same point (1, 2).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 136]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 16 | Page 136

RELATED QUESTIONS

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


The equation of normal to the curve y = tanx at (0, 0) is ______.


At (0, 0) the curve y = x3 + x


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×