Advertisements
Advertisements
Question
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
Solution
We know that the angle of intersection of two curves is equal to the angle between the tangents drawn to the curves at their point of intersection.
The given curves are y = 4 – x2 ....(i) and y = x2 .....(ii)
Differentiating eq. (i) and (ii) with respect to x, we have
`"dy"/"dx"` = – 2x
⇒ m1 = – 2x
m1 is the slope of the tangent to the curve (i).
And `"dy"/"dx"` = 2x
⇒ m2 = 2x
m2 is the slope of the tangent to the curve (ii).
So, m1 = – 2x and m2 = 2x
Now solving equation (i) and (ii) we get
⇒ 4 – x2 = x2
⇒ 2x2 = 4
⇒ x2 = 2
⇒ x = `+- sqrt(2)`
So, m1 = – 2x
= `-2sqrt(2)` and m2 = 2x = `2sqrt(2)`
Let θ be the angle of intersection of two curves
∴ tan θ = `|("m"_2 - "m"_1)/(1 + "m"_1"m"_2)|`
= `|(2sqrt(2) + 2sqrt(2))/(1 - (2sqrt(2))(2sqrt(2)))|`
= `|(4sqrt(2))/(1 - 8)|`
= `|(4sqrt(2))/(1 - 8)|`
= `|(4sqrt(2))/(-7)|`
= `(4sqrt(2))/7`
∴ θ = `tan^-1 ((4sqrt(2))/7)`
Hence, the required angle is `tan^-1 ((4sqrt(2))/7)`.
APPEARS IN
RELATED QUESTIONS
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
At (0, 0) the curve y = x3 + x
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is