Advertisements
Advertisements
Question
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Solution
Given that y2 = 4ax .....(i) and x2 = 4by .....(ii)
Solving (i) and (ii), we get
`(x^2/(4"b"))^2` = 4ax
⇒ x4 = 64 ab2x
or x(x3 – 64 ab2) = 0
⇒ x = 0, x = `4"a"^(1/3) "b"^(2/3)`
Therefore, the points of intersection are (0, 0) and `(4"a"^(1/3) "b"^(2/3), 4"a"^(2/3)"b"^(1/3))`.
Again, y2 = 4ax
⇒ `"dy"/"dx" = (4"a")/"dx" = (2"a")/y` and x2 = 4by
⇒ `"dy"/"dx" = (2x)/(4"b") = x/(2"b")`
Therefore, at (0, 0) the tangent to the curve y2 = 4ax is parallel to y-axis and tangent to the curve x2 = 4by is parallel to x-axis.
⇒ Angle between curves = `pi/2`
At `(4"a"^(1/3)"b"^(2/3), 4"a"^(2/3)"b"^(1/3))`, m1 ......(Slope of the tangent to the curve (i))
= `2("a"/"b")^(1/3)`
= `(2"a")/(4"a"^(2/3)"b"^(1/3))`
= `1/2("a"/"b")^(1/3)`, m2 ....(Slope of the tangent to the curve (ii))
= `(4"a"^(1/3)"b"^(2/3))/(2"b")`
= `2("a"/"b")^(1/3)`
Therefore, tan θ = `|("m"_2 - "m"_3)/(1 + "m"_1 "m"_2)|`
= `|(2("a"/"b")^(1/3) - 1/2("a"/"b")^(1/3))/(1 + 2("a"/"b")^(1/3) 1/2("a"/"b")^(1/3))|`
= `(3"a"^(1/3) . "b"^(1/3))/(2("a"^(2/3) + "b"^(2/3))`
Hence, θ = `tan^-1((3"a"^(1/3) . "b"^(1/3))/(2("a"^(2/3) + "b"^(2/3))))`
APPEARS IN
RELATED QUESTIONS
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The curve y = `x^(1/5)` has at (0, 0) ______.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is