English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point X 2 a 2 − Y 2 B 2 = 1 at ( a Sec θ , B Tan θ ) ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?

Sum

Solution

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[ \Rightarrow \frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{2x}{a^2}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x b^2}{y a^2}\]

\[\text { Slope of tangent},m= \left( \frac{dy}{dx} \right)_\left( a \sec \theta, b \tan \theta \right) =\frac{a \sec \theta \left( b^2 \right)}{b \tan \theta \left( a^2 \right)}=\frac{b}{a \sin \theta}\]

\[\text { Given }\left( x_1 , y_1 \right) = \left( a \sec \theta, b \tan \theta \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - b \tan \theta = \frac{b}{a \sin \theta}\left( x - a \sec \theta \right)\]

\[ \Rightarrow ay \sin \theta - ab \frac{\sin^2 \theta}{\cos \theta} = bx - \frac{ab}{\cos \theta}\]

\[ \Rightarrow \frac{ay \sin \theta \cos \theta - ab \sin^2 \theta}{\cos \theta} = \frac{bx \cos \theta - ab}{\cos \theta}\]

\[ \Rightarrow ay \sin \theta \cos \theta - \text { ab }\sin^2 \theta = bx \cos \theta - ab\]

\[ \Rightarrow bx \cos \theta - \text { ay } \sin \theta \cos \theta = ab \left( 1 - \sin^2 \theta \right)\]

\[ \Rightarrow bx \cos \theta - \text { ay } \sin \theta \cos \theta = ab \cos^2 \theta\]

\[\text { Dividing by ab } \cos^2 \theta,\]

\[ \Rightarrow \frac{x}{a}\sec \theta - \frac{y}{b}\tan \theta = 1\]

\[\text{Equation of normal is},\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - b \tan \theta = \frac{- a \sin \theta}{b}\left( x - a \sec \theta \right)\]

\[ \Rightarrow yb - b^2 \tan \theta = - ax \sin \theta + a^2 \tan\theta\]

\[ \Rightarrow ax \sin \theta + by = \left( a^2 + b^2 \right)\tan \theta\]

\[\text { Dividing by tan } \theta, \]

\[ax \cos \theta + by \cot \theta = \left( a^2 + b^2 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 3.08 | Page 27

RELATED QUESTIONS

Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


At (0, 0) the curve y = x3 + x


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Which of the following represent the slope of normal?


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×