Advertisements
Advertisements
Question
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Solution
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]
\[\text { Differentiating both sides w.r.t.x,} \]
\[ \Rightarrow \frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{2x}{a^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x b^2}{y a^2}\]
\[\text { Slope of tangent},m= \left( \frac{dy}{dx} \right)_\left( a \sec \theta, b \tan \theta \right) =\frac{a \sec \theta \left( b^2 \right)}{b \tan \theta \left( a^2 \right)}=\frac{b}{a \sin \theta}\]
\[\text { Given }\left( x_1 , y_1 \right) = \left( a \sec \theta, b \tan \theta \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - b \tan \theta = \frac{b}{a \sin \theta}\left( x - a \sec \theta \right)\]
\[ \Rightarrow ay \sin \theta - ab \frac{\sin^2 \theta}{\cos \theta} = bx - \frac{ab}{\cos \theta}\]
\[ \Rightarrow \frac{ay \sin \theta \cos \theta - ab \sin^2 \theta}{\cos \theta} = \frac{bx \cos \theta - ab}{\cos \theta}\]
\[ \Rightarrow ay \sin \theta \cos \theta - \text { ab }\sin^2 \theta = bx \cos \theta - ab\]
\[ \Rightarrow bx \cos \theta - \text { ay } \sin \theta \cos \theta = ab \left( 1 - \sin^2 \theta \right)\]
\[ \Rightarrow bx \cos \theta - \text { ay } \sin \theta \cos \theta = ab \cos^2 \theta\]
\[\text { Dividing by ab } \cos^2 \theta,\]
\[ \Rightarrow \frac{x}{a}\sec \theta - \frac{y}{b}\tan \theta = 1\]
\[\text{Equation of normal is},\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - b \tan \theta = \frac{- a \sin \theta}{b}\left( x - a \sec \theta \right)\]
\[ \Rightarrow yb - b^2 \tan \theta = - ax \sin \theta + a^2 \tan\theta\]
\[ \Rightarrow ax \sin \theta + by = \left( a^2 + b^2 \right)\tan \theta\]
\[\text { Dividing by tan } \theta, \]
\[ax \cos \theta + by \cot \theta = \left( a^2 + b^2 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the angle of intersection of the curves y2 = x and x2 = y.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
At (0, 0) the curve y = x3 + x
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
Which of the following represent the slope of normal?
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.