Advertisements
Advertisements
Question
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Solution
Let (x1, y1) be the required point.
Given:
\[y = 2x - 3\]
\[ \therefore \text { Slope of the line }= \frac{dy}{dx} = 2\]
\[y = x^3 - 2 x^2 - 2x\]
\[\text { Since } \left( x_1 y_1 \right) \text { lies on curve }, y_1 = {x_1}^3 - 2 {x_1}^2 - 2 x_1 . . . \left( 1 \right)\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = 3 {x_1}^2 - 4 x_1 - 2\]
\[\text { It is given that the tangent and the given line are parallel }.\]
\[\therefore \text { Slope of the tangent = Slope of the given line }\]
\[3 {x_1}^2 - 4 x_1 - 2 = 2\]
\[ \Rightarrow 3 {x_1}^2 - 4 x_1 - 4 = 0\]
\[ \Rightarrow 3 {x_1}^2 - 6 x_1 + 2 x_1 - 4 = 0\]
\[ \Rightarrow 3 x_1 \left( x_1 - 2 \right) + 2 \left( x_1 - 2 \right) = 0\]
\[ \Rightarrow \left( x_1 - 2 \right) \left( 3 x_1 + 2 \right) = 0\]
\[ \Rightarrow x_1 = 2 or x_1 = \frac{- 2}{3}\]
\[\text { Case1 }\]
\[\text { When }x_1 = 2\]
\[\text { On substituting the value of } x_1 \text { in eq. (1), we get}\]
\[ y_1 = 8 - 8 - 4 = - 4\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 2, - 4 \right)\]
\[\text { Case 2}\]
\[\text { When }x_1 = \frac{- 2}{3}\]
\[\text { On substituting the value of } x_1 \text { in eq. (1), we get }\]
\[ y_1 = \frac{- 8}{27} - \frac{8}{9} + \frac{4}{3} = \frac{- 8 - 24 + 36}{27} = \frac{4}{27}\]
\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{- 2}{3}, \frac{4}{27} \right)\]
APPEARS IN
RELATED QUESTIONS
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
The curve y = `x^(1/5)` has at (0, 0) ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.