Advertisements
Advertisements
Question
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Solution
Let the required point be (x1, y1).
We know that the slope of the x-axis is 0.
Given:
\[x^2 + y^2 - 2x - 4y + 1 = 0 \]
\[\left( x_1 , y_1 \right) \text { lies on a curve .} \]
\[ \therefore {x_1}^2 + {y_1}^2 - 2 x_1 - 4 y_1 + 1 = 0 . . . \left( 1 \right)\]
\[\text { Now,} \]
\[ x^2 + y^2 - 2x - 4y + 1 = 0 \]
\[ \Rightarrow 2x + 2y \frac{dy}{dx} - 2 - 4\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} \left( 2y - 4 \right) = 2 - 2x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 - 2x}{2y - 4} = \frac{1 - x}{y - 2}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1 - x_1}{y_1 - 2}...(2)\]
\[\text { Slope of the tangent } = 0 [\text { Given }]\]
\[ \therefore \frac{1 - x_1}{y_1 - 2} = 0\]
\[ \Rightarrow 1 - x_1 = 0\]
\[ \Rightarrow x_1 = 1\]
\[\text { On substituting the value of } x_1 \text { in eq. (1), we get }\]
\[1 + {y_1}^2 - 2 - 4 y_1 + 1 = 0\]
\[ \Rightarrow {y_1}^2 - 4 y_1 = 0\]
\[ \Rightarrow y_1 \left( y_1 - 4 \right) = 0\]
\[ \Rightarrow y_1 = 0, 4\]
\[\text { Thus, the required points are (1, 0) and (1, 4)}.\]
APPEARS IN
RELATED QUESTIONS
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Let `y = f(x)` be the equation of the curve, then equation of normal is
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3