Advertisements
Advertisements
प्रश्न
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
उत्तर
Let the required point be (x1, y1).
We know that the slope of the x-axis is 0.
Given:
\[x^2 + y^2 - 2x - 4y + 1 = 0 \]
\[\left( x_1 , y_1 \right) \text { lies on a curve .} \]
\[ \therefore {x_1}^2 + {y_1}^2 - 2 x_1 - 4 y_1 + 1 = 0 . . . \left( 1 \right)\]
\[\text { Now,} \]
\[ x^2 + y^2 - 2x - 4y + 1 = 0 \]
\[ \Rightarrow 2x + 2y \frac{dy}{dx} - 2 - 4\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} \left( 2y - 4 \right) = 2 - 2x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 - 2x}{2y - 4} = \frac{1 - x}{y - 2}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1 - x_1}{y_1 - 2}...(2)\]
\[\text { Slope of the tangent } = 0 [\text { Given }]\]
\[ \therefore \frac{1 - x_1}{y_1 - 2} = 0\]
\[ \Rightarrow 1 - x_1 = 0\]
\[ \Rightarrow x_1 = 1\]
\[\text { On substituting the value of } x_1 \text { in eq. (1), we get }\]
\[1 + {y_1}^2 - 2 - 4 y_1 + 1 = 0\]
\[ \Rightarrow {y_1}^2 - 4 y_1 = 0\]
\[ \Rightarrow y_1 \left( y_1 - 4 \right) = 0\]
\[ \Rightarrow y_1 = 0, 4\]
\[\text { Thus, the required points are (1, 0) and (1, 4)}.\]
APPEARS IN
संबंधित प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
At (0, 0) the curve y = x3 + x
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
Which of the following represent the slope of normal?