मराठी

Find the Equations of All Lines of Slope Zero and that Are Tangent to the Curve Y = 1 X 2 − 2 X + 3 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?

बेरीज

उत्तर

Slope of the given tangent is 0.

\[\text { Let }\left( x_1 , y_1 \right)\text { be a point where the tangent is drawn to the curve} (1).\]

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence }, y_1 = \frac{1}{{x_1}^2 - 2 x_1 + 3} . . . \left( 1 \right) \]

\[\text { Now,} y = \frac{1}{x^2 - 2x + 3}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\left( x^2 - 2x + 3 \right)\left( 0 \right) - \left( 2x - 2 \right)1}{\left( x^2 - 2x + 3 \right)^2} = \frac{- 2x + 2}{\left( x^2 - 2x + 3 \right)^2}\]

\[\text { Slope of tangent }=\frac{- 2 x_1 + 2}{\left( {x_1}^2 - 2 x_1 + 3 \right)^2}\]

\[\text { Given that }\]

\[\text { Slope of tangent = slope of the given line }\]

\[ \Rightarrow \frac{- 2 x_1 + 2}{\left( {x_1}^2 - 2 x_1 + 3 \right)^2} = 0\]

\[ \Rightarrow - 2 x_1 + 2 = 0\]

\[ \Rightarrow 2 x_1 = 2\]

\[ \Rightarrow x_1 = 1\]

\[\text { Now }, y = \frac{1}{1 - 2 + 3} = \frac{1}{2} ............\left[ \text { From }\left( 1 \right) \right]\]

\[ \therefore \left( x_1 , y_1 \right) = \left( 1, \frac{1}{2} \right)\]

\[\text { Equation oftangentis},\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{1}{2} = 0 \left( x - 1 \right)\]

\[ \Rightarrow y = \frac{1}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 15 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


At (0, 0) the curve y = x3 + x


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×