Advertisements
Advertisements
प्रश्न
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
उत्तर
Let (x1, y1) be the required point.
Given:
\[y = 2x - 3\]
\[ \therefore \text { Slope of the line }= \frac{dy}{dx} = 2\]
\[y = x^3 - 2 x^2 - 2x\]
\[\text { Since } \left( x_1 y_1 \right) \text { lies on curve }, y_1 = {x_1}^3 - 2 {x_1}^2 - 2 x_1 . . . \left( 1 \right)\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = 3 {x_1}^2 - 4 x_1 - 2\]
\[\text { It is given that the tangent and the given line are parallel }.\]
\[\therefore \text { Slope of the tangent = Slope of the given line }\]
\[3 {x_1}^2 - 4 x_1 - 2 = 2\]
\[ \Rightarrow 3 {x_1}^2 - 4 x_1 - 4 = 0\]
\[ \Rightarrow 3 {x_1}^2 - 6 x_1 + 2 x_1 - 4 = 0\]
\[ \Rightarrow 3 x_1 \left( x_1 - 2 \right) + 2 \left( x_1 - 2 \right) = 0\]
\[ \Rightarrow \left( x_1 - 2 \right) \left( 3 x_1 + 2 \right) = 0\]
\[ \Rightarrow x_1 = 2 or x_1 = \frac{- 2}{3}\]
\[\text { Case1 }\]
\[\text { When }x_1 = 2\]
\[\text { On substituting the value of } x_1 \text { in eq. (1), we get}\]
\[ y_1 = 8 - 8 - 4 = - 4\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 2, - 4 \right)\]
\[\text { Case 2}\]
\[\text { When }x_1 = \frac{- 2}{3}\]
\[\text { On substituting the value of } x_1 \text { in eq. (1), we get }\]
\[ y_1 = \frac{- 8}{27} - \frac{8}{9} + \frac{4}{3} = \frac{- 8 - 24 + 36}{27} = \frac{4}{27}\]
\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{- 2}{3}, \frac{4}{27} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Which of the following represent the slope of normal?
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.