Advertisements
Advertisements
प्रश्न
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
उत्तर
\[ x^2 = 4y . . . \left( 1 \right)\]
\[4y + x^2 = 8 . . . \left( 2 \right)\]
\[\text { Given point is }\left( 2, 1 \right)\]
\[\text { Differentiating (1) w.r.t.x,}\]
\[2x = 4\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x}{2}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 2, 1 \right) = \frac{2}{2} = 1\]
\[\text { Differentiating (2) w.r.t.x,}\]
\[4\frac{dy}{dx} + 2x = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- x}{2}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 2, 1 \right) = \frac{- 2}{2} = - 1\]
\[\text { Since, } m_1 \times m_2 = - 1\]
Hence, the given curves intersect orthogonally at the given point.
APPEARS IN
संबंधित प्रश्न
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
At (0, 0) the curve y = x3 + x
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
Let `y = f(x)` be the equation of the curve, then equation of normal is
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.