Advertisements
Advertisements
प्रश्न
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
उत्तर
\[\text { Given }: \]
\[2x = y^2 . . . \left( 1 \right)\]
\[2xy = k . . . \left( 2 \right)\]
\[\text { From (1) and (2), we get }\]
\[ y^3 = k\]
\[ \Rightarrow y = k^\frac{1}{3} \]
\[\text { From (1), we get }\]
\[2x = k^\frac{2}{3} \]
\[ \Rightarrow x = \frac{k^\frac{2}{3}}{2}\]
\[\text { On differentiating (1) w.r.t.x,we get }\]
\[2 = 2y\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{y}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( \frac{k^\frac{2}{3}}{2}, k^\frac{1}{3} \right) = \frac{1}{k^\frac{1}{3}} = k^\frac{- 1}{3} \]
\[\text { On differentiating (2) w.r.t.x,we get }\]
\[2x\frac{dy}{dx} + 2y = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( \frac{k^\frac{2}{3}}{2}, k^\frac{1}{3} \right) = \frac{- k^\frac{1}{3}}{\left( \frac{k^\frac{2}{3}}{2} \right)} = - 2 k^\frac{- 1}{3} \]
\[\text { It is given that the curves intersect orthogonally }.\]
\[ \therefore m_1 \times m_2 = - 1\]
\[ \Rightarrow k^\frac{- 1}{3} \times - 2 k^\frac{- 1}{3} = - 1\]
\[ \Rightarrow 2 k^\frac{- 2}{3} = 1\]
\[ \Rightarrow k^\frac{- 2}{3} = \frac{1}{2}\]
\[ \Rightarrow k^\frac{2}{3} = 2\]
\[\text { Cubing on both sides, we get }\]
\[ k^2 = 8\]
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Which of the following represent the slope of normal?
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.