मराठी

At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis? - Mathematics

Advertisements
Advertisements

प्रश्न

At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?

बेरीज

उत्तर

Given that the equation of the curve is

x2 + y2 – 2x – 4y + 1 = 0  ....(i)

Differentiating both sides w.r.t. x, we have

`2x + 2y * "dy"/"dx" - 2 - 4 * "dy"/"dx"` = 0

⇒ `(2y - 4) "dy"/"dx"` = 2 – 2x

⇒ `"dy"/"dx" = (2 - 2x)/(2y - 4)`  ....(ii)

Since the tangent to the curve is parallel to the y-axis.

∴ Slope `"dy"/"dx" = tan  pi/2`

= `oo`

= `1/0`

So, from equation (ii) we get

`(2 - 2x)/(2y - 4) = 1/0`

⇒ 2y – 4 = 0

⇒ y = 2

Now putting the value of y in equation (i), we get

⇒ x2 + (2)2 – 2x – 8 + 1 = 0

⇒ x2 – 2x + 4 – 8 + 1 = 0

⇒ x2 – 2x – 3 = 0

⇒ x2 – 3x + x – 3 = 0

⇒ x(x – 3) + 1(x – 3) = 0

⇒ (x – 3)(x + 1) = 0

⇒ x = – 1 or 3

Hence, the required points are (– 1, 2) and (3, 2).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 18 | पृष्ठ १३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


The equation of normal to the curve y = tanx at (0, 0) is ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×