मराठी

Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.

बेरीज

उत्तर

We have equation of the curve 3x2 – y2 = 8

Differentiating both sides w.r.t. x, we get

⇒ `6x - 2y * "dy"/"dx"` = 0

⇒ `-2y "dy"/"dx"` = – 6x

⇒ `"dy"/"dx" = (3x)/y`

Slope of the tangent to the given curve = `(3x)/y`

∴ Slope of the normal to the curve = `- 1/((3x)/y) = - y/(3x)`

Now differentiating both sides the given line x + 3y = 4

⇒ `1 + 3 * "dy"/"dx"` = 0

⇒ `"dy"/"dx" = - 1/3`

Since the normal to the curve is parallel to the given line x + 3y = 4.

∴ `- y/(3x) = - 1/3`

⇒ y = x

Putting the value of y in 3x2 – y2 = 8, we get

3x2 – x2 = 8

⇒ 2x2 = 8

⇒ x2 = 4

⇒ x = ± 2

∴ y = ± 2

∴ The points on the curve are (2, 2) and (– 2, – 2).

Now equation of the normal to the curve at (2, 2) is

y – 2 = `- 1/3 (x - 2)`

⇒ 3y – 6 = – x + 2 

⇒ x + 3y = 8

At (– 2, – 2) y + 2 = `- 1/3 (x + 2)`

⇒ 3y + 6 = – x – 2

⇒ x + 3y = – 8

Hence, the required equations are x + 3y = 8 and x + 3y = – 8 or x + 3y = ± 8.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 17 | पृष्ठ १३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The curve y = `x^(1/5)` has at (0, 0) ______.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Let `y = f(x)` be the equation of the curve, then equation of normal is


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×