मराठी

The Point on the Curve Y = X2 − 3x + 2 Where Tangent is Perpendicular To Y = X Is - Mathematics

Advertisements
Advertisements

प्रश्न

The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .

पर्याय

  • (0, 2)

  • (1, 0)

  • (−1, 6)

  • (2, −2)

MCQ

उत्तर

(1, 0)

 

`y = x`

\[\Rightarrow \frac{dy}{dx} = 1\]

\[\text { Let }\left( x_1 , y_1 \right)\text { be the required point. }\]

\[\text { Since, the point lies on the curve,} \]

\[\text { Hence }, y_1 = {x_1}^2 - 3 x_1 + 2\]

\[\text { Now }, y = x^2 - 3x + 2\]

\[ \therefore \frac{dy}{dx} = 2x - 3\]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = 2 x_1 - 3\]

The tangent is perpendicular to this line.

∴Slope of the tangent = \[\frac{- 1}{\text { Slope of the line }} = \frac{- 1}{1} = - 1\]

Now,

\[2 x_1 - 3 = - 1\]

\[ \Rightarrow 2 x_1 = 2\]

\[ \Rightarrow x_1 = 1\]

\[\text { and }\]

\[ y_1 = {x_1}^2 - 3 x_1 + 2 = 1 - 3 + 2 = 0\]

\[ \therefore \left( x_1 , y_1 \right) = \left( 1, 0 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 6 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×