Advertisements
Advertisements
Question
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
Options
(0, 2)
(1, 0)
(−1, 6)
(2, −2)
Solution
(1, 0)
`y = x`
\[\Rightarrow \frac{dy}{dx} = 1\]
\[\text { Let }\left( x_1 , y_1 \right)\text { be the required point. }\]
\[\text { Since, the point lies on the curve,} \]
\[\text { Hence }, y_1 = {x_1}^2 - 3 x_1 + 2\]
\[\text { Now }, y = x^2 - 3x + 2\]
\[ \therefore \frac{dy}{dx} = 2x - 3\]
\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = 2 x_1 - 3\]
The tangent is perpendicular to this line.
∴Slope of the tangent = \[\frac{- 1}{\text { Slope of the line }} = \frac{- 1}{1} = - 1\]
Now,
\[2 x_1 - 3 = - 1\]
\[ \Rightarrow 2 x_1 = 2\]
\[ \Rightarrow x_1 = 1\]
\[\text { and }\]
\[ y_1 = {x_1}^2 - 3 x_1 + 2 = 1 - 3 + 2 = 0\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 1, 0 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.