English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point Y = X4 − 6x3 + 13x2 − 10x + 5 at X = 1 ? - Mathematics

Advertisements
Advertisements

Question

 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 

Sum

Solution

\[y= x^4 - 6 x^3 + 13 x^2 - 10x + 5\]

\[\text{ When }x = 1 , \]

`y = 1 - 6 + 13 - 10 + 5 = 3`

\[\text { So}, \left( x_1 , y_1 \right) = \left( 1, 3 \right)\]

\[\text { Now,} y= x^4 - 6 x^3 + 13 x^2 - 10x + 5\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[\frac{dy}{dx} = 4 x^3 - 18 x^2 + 26x - 10\]

\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( 1, 3 \right) =4-18+26 - 10 = 2\]

\[\text { Equation of tangent is },\]

\[y - y_1 = 2 \left( x - x_1 \right)\]

\[ \Rightarrow y - 3 = 2\left( x - 1 \right)\]

\[ \Rightarrow y - 3 = 2x - 2\]

\[ \Rightarrow 2x - y + 1 = 0\]

\[\text { Equation of normal is
},\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 3 = \frac{- 1}{2} \left( x - 1 \right)\]

\[ \Rightarrow 2y - 6 = - x + 1\]

\[ \Rightarrow x + 2y - 7 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 3.02 | Page 27

RELATED QUESTIONS

Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The curve y = `x^(1/5)` has at (0, 0) ______.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


Let `y = f(x)` be the equation of the curve, then equation of normal is


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×