English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point Y = X4 − Bx3 + 13x2 − 10x + 5 at (0, 5) ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?

Solution

\[y= x^4 - b x^3 + 13 x^2 - 10x + 5\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[\frac{dy}{dx} = 4 x^3 - 3b x^2 + 26x - 10\]

\[\text { Slope of tangent},m= \left( \frac{dy}{dx} \right)_\left( 0, 5 \right) =-10\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( 0, 5 \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 5 = - 10\left( x - 0 \right)\]

\[ \Rightarrow y - 5 = - 10x\]

\[ \Rightarrow y + 10x - 5 = 0\]

\[\text { Equation of normal is},\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 5 = \frac{1}{10} \left( x - 0 \right)\]

\[ \Rightarrow 10y - 50 = x\]

\[ \Rightarrow x - 10y + 50 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 3.01 | Page 27

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×