English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point X 2 3 + Y 2 3 = 2 at (1, 1) ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?

Solution

\[x^\frac{2}{3} + y^\frac{2}{3} = 2\]

\[\text { Differentiating both sides w.r.t.x}, \]

\[\frac{2}{3} x^\frac{- 1}{3} + \frac{2}{3} y^\frac{- 1}{3} \frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x^\frac{- 1}{3}}{y^\frac{- 1}{3}} = \frac{- y^\frac{1}{3}}{x^\frac{1}{3}}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) =\frac{- 1}{1}=-1\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( 1, 1 \right)\]

\[\text { Equation of tangent is,}\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = - 1\left( x - 1 \right)\]

\[ \Rightarrow y - 1 = - x + 1\]

\[ \Rightarrow x + y - 2 = 0\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = 1\left( x - 1 \right)\]

\[ \Rightarrow y - 1 = x - 1\]

\[ \Rightarrow y - x = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 3.14 | Page 27

RELATED QUESTIONS

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×