हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point X 2 3 + Y 2 3 = 2 at (1, 1) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?

उत्तर

\[x^\frac{2}{3} + y^\frac{2}{3} = 2\]

\[\text { Differentiating both sides w.r.t.x}, \]

\[\frac{2}{3} x^\frac{- 1}{3} + \frac{2}{3} y^\frac{- 1}{3} \frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x^\frac{- 1}{3}}{y^\frac{- 1}{3}} = \frac{- y^\frac{1}{3}}{x^\frac{1}{3}}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) =\frac{- 1}{1}=-1\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( 1, 1 \right)\]

\[\text { Equation of tangent is,}\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = - 1\left( x - 1 \right)\]

\[ \Rightarrow y - 1 = - x + 1\]

\[ \Rightarrow x + y - 2 = 0\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = 1\left( x - 1 \right)\]

\[ \Rightarrow y - 1 = x - 1\]

\[ \Rightarrow y - x = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 3.14 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×