Advertisements
Advertisements
प्रश्न
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
उत्तर
The slope of the y-axis is \[\infty\] Now, let (x1, y1) be the required point.
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence }, \frac{{x_1}^2}{4} + \frac{{y_1}^2}{25} = 1 . . . \left( 1 \right)\]
\[\text{ Now }, \frac{x^2}{4} + \frac{y^2}{25} = 1 \]
\[ \therefore \frac{2x}{4} + \frac{2y}{25}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{2y}{25}\frac{dy}{dx} = \frac{- x}{2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 25x}{4y}\]
\[\text { Now, }\]
\[\text { Slope of the tangent at}\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- 25 x_1}{4 y_1}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)=\text { Slope of they-axis [Given] }\]
\[ \therefore \frac{- 25 x_1}{4 y_1} = \infty \]
\[ \Rightarrow \frac{4 y_1}{- 25 x_1} = 0\]
\[ \Rightarrow y_1 = 0\]
\[\text { Also,} \]
\[\frac{{x_1}^2}{4} = 1 [\text { From eq. } (1)]\]
\[ \Rightarrow {x_1}^2 = 4\]
\[ \Rightarrow x_1 = \pm 2\]
\[\text { Thus, the required points are }\left( 2, 0 \right)\text { and }\left( - 2, 0 \right).\]
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the angle of intersection of the curves y2 = x and x2 = y.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.