हिंदी

Write the Equation of the Normal to the Curve Y = X + Sin X Cos X at X = π 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?

उत्तर

\[\text { Here,} \]

\[y = x + \sin x \cos x\]

\[\text { On differentiating both sides w.r.t.x, we get }\]

\[\frac{dy}{dx} = 1 + \cos^2 x - \sin^2 x\]

\[\text { Now,} \]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{2}} {= 1+cos}^2 \frac{\pi}{2} {-sin}^2 \frac{\pi}{2}= 1-1=0\]

\[\text { When }x=\frac{\pi}{2},y=\frac{\pi}{2}+sin\frac{\pi}{2}\cos\frac{\pi}{2}=\frac{\pi}{2}\]

\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{\pi}{2}, \frac{\pi}{2} \right)\]

\[\text { Equation of the normal }\]

\[ = y - y_1 = \frac{- 1}{\text { Slope of the tangent }}\left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{\pi}{2} = \frac{- 1}{0}\left( x - \frac{\pi}{2} \right)\]

\[ \Rightarrow x = \frac{\pi}{2}\]

\[ \Rightarrow 2x = \pi\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.4 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.4 | Q 10 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×