हिंदी

Write the Angle Between the Curves Y = E−X and Y = Ex at Their Point of Intersections ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the angle between the curves y = e−x and y = ex at their point of intersections ?

योग

उत्तर

\[\text { Given }: \]

\[y = e^{- x} . . . \left( 1 \right)\]

\[y = e^x . . . \left( 2 \right)\]

\[\text { On substituting the value of y in (1), we get }\]

\[ e^{- x} = e^x \]

\[ \Rightarrow x = 0\]

\[\text { and }\]

\[y = 1 ...................[\text { From } (2)]\]

\[\text { On differentiating (1) w.r.t.x,we get }\]

\[\frac{dy}{dx} = - e^{- x} \]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 0, 1 \right) = - 1\]

\[\text { On differentiating (2) w.r.t.x,we get }\]

\[\frac{dy}{dx} = e^x \]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 0, 1 \right) = 1\]

\[ \because m_1 \times m_2 = - 1\]

Since the multiplication of the slopes is - 1.

So the slopes are perpendicular to each other.

\[ \therefore \text { Required angle } = \frac{\pi}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.4 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.4 | Q 14 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Let `y = f(x)` be the equation of the curve, then equation of normal is


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×