हिंदी

The Equation of the Normal to the Curve Y = X + Sin X Cos X at X = π/2 is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .

विकल्प

  • = 2

  • x = π

  • x + π = 0

  • 2x = π

MCQ

उत्तर

2x = π

 

\[\text { Given }: \]

\[y = x + \sin x \cos x\]

\[\text { On differentiating both sides w.r.t.x, we get }\]

\[\frac{dy}{dx} = 1 + \cos^2 x - \sin^2 x\]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{2}} {=1+cos}^2 \frac{\pi}{2} {-sin}^2 \frac{\pi}{2}=1-1=0\]

\[\text { Slope of the normal, } m=\frac{- 1}{0}\]

\[\text { When }x=\frac{\pi}{2},\]

\[y=\frac{\pi}{2}+cos\frac{\pi}{2}\sin\frac{\pi}{2}=\frac{\pi}{2}\]

\[\text { Now }, \]

\[\left( x_1 , y_1 \right) = \left( \frac{\pi}{2}, \frac{\pi}{2} \right)\]

\[ \therefore \text { Equation of the normal }\]

\[ = y - y_1 = m\left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{\pi}{2} = \frac{- 1}{0}\left( x - \frac{\pi}{2} \right)\]

\[ \Rightarrow x = \frac{\pi}{2}\]

\[ \Rightarrow 2x = \pi\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.5 | Q 2 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×