Advertisements
Advertisements
प्रश्न
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
विकल्प
x = 2
x = π
x + π = 0
2x = π
उत्तर
2x = π
\[\text { Given }: \]
\[y = x + \sin x \cos x\]
\[\text { On differentiating both sides w.r.t.x, we get }\]
\[\frac{dy}{dx} = 1 + \cos^2 x - \sin^2 x\]
\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{2}} {=1+cos}^2 \frac{\pi}{2} {-sin}^2 \frac{\pi}{2}=1-1=0\]
\[\text { Slope of the normal, } m=\frac{- 1}{0}\]
\[\text { When }x=\frac{\pi}{2},\]
\[y=\frac{\pi}{2}+cos\frac{\pi}{2}\sin\frac{\pi}{2}=\frac{\pi}{2}\]
\[\text { Now }, \]
\[\left( x_1 , y_1 \right) = \left( \frac{\pi}{2}, \frac{\pi}{2} \right)\]
\[ \therefore \text { Equation of the normal }\]
\[ = y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{\pi}{2} = \frac{- 1}{0}\left( x - \frac{\pi}{2} \right)\]
\[ \Rightarrow x = \frac{\pi}{2}\]
\[ \Rightarrow 2x = \pi\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3