हिंदी

The equation of the normal to the curve y = sinx at (0, 0) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the normal to the curve y = sinx at (0, 0) is ______.

विकल्प

  • x = 0

  • y = 0

  • x + y = 0

  • x – y = 0

MCQ
रिक्त स्थान भरें

उत्तर

The equation of the normal to the curve y = sinx at (0, 0) is x + y = 0.

Explanation:

`"dy"/"dx"` = cosx.

Therefore, slope of normal = `((-1)/cosx)_(x = 0)`

= –1.

Hence the equation of normal is y – 0 = –1(x – 0) or x + y = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Solved Examples [पृष्ठ १३३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Solved Examples | Q 22 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


Let `y = f(x)` be the equation of the curve, then equation of normal is


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×