Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
उत्तर
\[y^2 =4ax\]
\[\text { Differentiating both sides w.r.t.x,} \]
\[2y \frac{dy}{dx} = 4a\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2a}{y}\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( \frac{a}{m^2}, \frac{2a}{m} \right)\]
\[\text { Slope of tangent }= \left( \frac{dy}{dx} \right)_\left( \frac{a}{m^2}, \frac{2a}{m} \right) =\frac{2a}{\left( \frac{2a}{m} \right)}=m\]
\[\text { Equation of tangent is, }\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{2a}{m} = m \left( x - \frac{a}{m^2} \right)\]
\[ \Rightarrow \frac{my - 2a}{m} = m\left( \frac{m^2 x - a}{m^2} \right)\]
\[ \Rightarrow my - 2a = m^2 x - a\]
\[ \Rightarrow m^2 x - my + a = 0\]
\[\text { Equation of normal is},\]
\[y - y_1 = \frac{1}{\text { Slope of tangent}} \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{2a}{m} = \frac{- 1}{m}\left( x - \frac{a}{m^2} \right)\]
\[ \Rightarrow \frac{my - 2a}{m} = \frac{- 1}{m}\left( \frac{m^2 x - a}{m^2} \right)\]
\[ \Rightarrow m^3 y - 2a m^2 = - m^2 x + a\]
\[ \Rightarrow m^2 x + m^3 y - 2a m^2 - a = 0\]
APPEARS IN
संबंधित प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Which of the following represent the slope of normal?
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.