हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point C 2 ( X 2 + Y 2 ) = X 2 Y 2 at ( C Cos θ , C Sin θ ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?

उत्तर

\[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \]

\[\text { Differentiating both sides w.r.t.x }, \]

\[ \Rightarrow 2x c^2 + 2y c^2 \frac{dy}{dx} = x^2 2y \frac{dy}{dx} + 2x y^2 \]

\[ \Rightarrow \frac{dy}{dx}\left( 2y c^2 - 2 x^2 y \right) = 2x y^2 - 2x c^2 \]

\[ \Rightarrow \frac{dy}{dx} = \frac{x y^2 - x c^2}{y c^2 - x^2 y}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( \frac{c}{\cos \theta}, \frac{c}{\sin \theta} \right) \]

\[=\frac{\frac{c^3}{\cos \theta \sin^2 \theta} - \frac{c^3}{\cos \theta}}{\frac{c^3}{\sin\theta} - \frac{c^3}{\cos^2 \theta \sin\theta}}\]

\[ = \frac{\frac{1 - \sin^2 \theta}{\cos\theta \sin^2 \theta}}{\frac{\cos^2 \theta - 1}{\cos^2 \theta \sin\theta}}\]

\[ = \frac{co s^2 \theta}{\cos \theta \sin^2 \theta} \times \frac{\cos^2 \theta \sin\theta}{- \sin^2 \theta}\]

\[ = \frac{- \cos^3 \theta}{\sin^3 \theta}\]

\[\text { Given }\left( x_1 , y_1 \right) = \left( \frac{c}{\cos \theta}, \frac{c}{\sin \theta} \right)\]

\[\text { Equation of tangent is},\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{c}{\sin \theta} = \frac{- \cos^3 \theta}{\sin^3 \theta} \left( x - \frac{c}{\cos \theta} \right)\]

\[ \Rightarrow \frac{y\sin\theta - c}{\sin\theta} = \frac{- \cos^3 \theta}{\sin^3 \theta}\left( \frac{x \cos\theta - c}{\cos\theta} \right)\]

\[ \Rightarrow \sin^2 \theta\left( y \sin\theta - c \right) = - \cos^2 \theta\left( x\cos\theta - c \right)\]

\[ \Rightarrow y \sin^3 \theta - c \sin^2 \theta = - x \cos^3 \theta + c \cos^2 \theta\]

\[ \Rightarrow x \cos^3 \theta + y \sin^3 \theta = c\left( si n^2 \theta + \cos^2 \theta \right)\]

\[ \Rightarrow x \cos^3 \theta + y \sin^3 \theta = c\]

\[\text { Equation of normal is},\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{c}{\sin \theta} = \frac{\sin^3 \theta}{\cos^3 \theta}\left( x - \frac{c}{\cos \theta} \right)\]

\[ \Rightarrow \cos^3 \theta\left( y - \frac{c}{\sin \theta} \right) = \sin^3 \theta\left( x - \frac{c}{\cos \theta} \right)\]

\[ \Rightarrow y \cos^3 \theta - \frac{c \cos^3 \theta}{\sin\theta} = x \sin^3 \theta - \frac{c \sin^3 \theta}{\cos\theta}\]

\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = \frac{c \sin^3 \theta}{\cos\theta} - \frac{c \cos^3 \theta}{\sin\theta}\]

\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = c\left( \frac{\sin^4 \theta - \cos^4 \theta}{\cos\theta \sin\theta} \right)\]

\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = c\left[ \frac{\left( \sin^2 \theta + \cos^2 \theta \right)\left( \sin^2 \theta - \cos^2 \theta \right)}{\cos\theta \sin\theta} \right]\]

\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta =\]

\[ 2c \left[ \frac{- \left( \cos^2 \theta - \sin^2 \theta \right)}{2\cos\theta \sin\theta} \right]\]

\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta = 2c\left[ \frac{- \cos \left( 2\theta \right)}{\sin\left( 2\theta \right)} \right]\]

\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta = - 2c \text { cot }\left( 2\theta \right)\]

\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta + 2c \text { cot }\left( 2\theta \right) = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 3.1 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×