Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
उत्तर
\[x = a\left( \theta + \sin\theta \right) \text { and }y = a\left( 1 - \cos\theta \right)\]
\[\frac{dx}{d\theta} = a\left( 1 + \cos\theta \right) \text { and } \frac{dy}{d\theta} = a\sin\theta\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\sin\theta}{a\left( 1 + \cos\theta \right)} = \frac{\sin\theta}{\left( 1 + \cos\theta \right)} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} = \tan\frac{\theta}{2} . . . \left( 1 \right)\]
\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\theta =\tan\frac{\theta}{2}\]
\[\text { Now }, \left( x_1 , y_1 \right) = \left[ a\left( \theta + \sin\theta \right), a\left( 1 - \cos\theta \right) \right] \]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - a\left( 1 - \cos\theta \right) = \tan\frac{\theta}{2}\left[ x - a\left( \theta + \sin\theta \right) \right]\]
\[ \Rightarrow y - a\left( 2 \sin^2 \frac{\theta}{2} \right) = x\tan\frac{\theta}{2} - a\theta\tan\frac{\theta}{2} - a\tan\frac{\theta}{2}\sin\theta\]
\[ \Rightarrow y - a\left( 2 \sin^2 \frac{\theta}{2} \right) = x\tan\frac{\theta}{2} - a\theta\tan\frac{\theta}{2} - a\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}2\sin\frac{\theta}{2}\cos\frac{\theta}{2}........... [From (1)]\]
\[ \Rightarrow y - 2a \sin^2 \frac{\theta}{2} = \left( x - a\theta \right)\tan\frac{\theta}{2} - 2a \sin^2 \frac{\theta}{2}\]
\[ \Rightarrow y = \left( x - a\theta \right)\tan\frac{\theta}{2}\]
\[\text { Equation of normal is },\]
\[y - a\left( 1 - \cos\theta \right) = - \cot\frac{\theta}{2}\left[ x - a\left( \theta + \sin\theta \right) \right]\]
\[ \Rightarrow \tan \frac{\theta}{2}\left[ y - a\left( 2 \sin^2 \frac{\theta}{2} \right) \right] = - x + a\theta + a\sin\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left[ y - a\left\{ 2 \left( 1 - \cos^2 \frac{\theta}{2} \right) \right\} \right] = - x + a\theta + a\sin\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left( y - 2a \right) + a \left( 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \right) = - x + a\theta + asin\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left( y - 2a \right) + a\sin\theta = - x + a\theta + asin\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left( y - 2a \right) = - x + a\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left( y - 2a \right) + x - a\theta = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.