Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
उत्तर
\[x = a \sec t \text{ and }y = b \tan t\]
\[\frac{dx}{dt} = a \sec t \tan t \text { and } \frac{dy}{dt} = b \sec^2 t\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{b \sec^2 t}{a \sec t \tan t} = \frac{b}{a}\ cosec\ t\]
\[\text { Slope of tangent, }m= \left( \frac{dy}{dx} \right)_{t = t} =\frac{b}{a}\ cosec\ t\]
\[\text { Now, }\left( x_1 , y_1 \right) = \left( a \sec t, b \tan t \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - b \tan t = \frac{b}{a}\ cosec \ t\left( x - a sec t \right)\]
\[ \Rightarrow y - \frac{b \sin t}{\cos t} = \frac{b}{a \sin t}\left( x - \frac{a}{\cos t} \right)\]
\[ \Rightarrow \frac{y \cos t - b \sin t}{\cos t} = \frac{b}{a \sin t}\left( \frac{x \cos t - a}{\cos t} \right)\]
\[ \Rightarrow y \cos t - b \sin t = \frac{b}{a \sin t}\left( x \cos t - a \right)\]
\[ \Rightarrow ay \sin t \cos t - ab \sin^2 t = bx \cos t - ab\]
\[ \Rightarrow bx \cos t - ay \sin t \cos t - ab\left( 1 - \sin^2 t \right) = 0\]
\[ \Rightarrow bx \cos t - ay \sin t \cos t = ab \cos^2 t\]
\[\text { Dividing by } \cos^2 t,\]
\[bx \sec t - ay \tan t = ab\]
\[\text { Equation of normal is,}\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - b \tan t = \frac{- a}{b}\sin t\left( x - a \sec t \right)\]
\[ \Rightarrow y - b \frac{\sin t}{\cos t} = \frac{- a}{b}\sin t\left( x - \frac{a}{\cos t} \right)\]
\[ \Rightarrow \frac{y \cos t - b \sin t}{\cos t} = \frac{- a}{b}\sin t\left( \frac{x \cos t - a}{\cos t} \right)\]
\[ \Rightarrow y \cos t - b \sin t = \frac{- a}{b} \sin t\left( x \cos t - a \right)\]
\[ \Rightarrow by \cos t - b^2 \sin t = - ax \sin t \cos t + a^2 \sin t\]
\[ \Rightarrow ax \sin t \cos t + by \cos t = \left( a^2 + b^2 \right)\sin t\]
\[\text { Dividing both sides by sint },\]
\[ax \cos t + by \cot t = a^2 + b^2\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.