हिंदी

Find the Equation of the Normal at the Point (Am2, Am3) for the Curve Ay2 = X3. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.

उत्तर

The equation of the given curve is ay2 = x3.

On differentiating with respect to x, we have:

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.3 [पृष्ठ २१२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.3 | Q 20 | पृष्ठ २१२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


The equation of the normal to the curve y = sinx at (0, 0) is ______.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


The curve y = `x^(1/5)` has at (0, 0) ______.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×