हिंदी

The Point at the Curve Y = 12x − X2 Where the Slope of the Tangent is Zero Will Be - Mathematics

Advertisements
Advertisements

प्रश्न

The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .

विकल्प

  • (0, 0)

  • (2, 16)

  • (3, 9)

  • none of these

MCQ

उत्तर

None of these

 

\[\text { Let }\left( x_1 , y_1 \right)\text { be the required point.}\]

\[\text { Since, the point lies on the curve }, \]

\[\text { Hence }, y_1 = 12 x_1 - {x_1}^2 \]

\[\text { Now }, \]

\[y = 12x - x^2 \]

\[ \Rightarrow \frac{dy}{dx} = 12 - 2x\]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =12 - 2 x_1 \]

\[\text { Given }:\]

\[\text { Slope of the tangent }=0\]

\[12 - 2 x_1 = 0\]

\[ \Rightarrow x_1 = 6\]

\[\text { Now }, \]

\[ y_1 = 12 x_1 - {x_1}^2 = 72 - 36 = 36\]

\[ \therefore \left( x_1 , y_1 \right) = \left( 6, 36 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.5 | Q 8 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The equation of the normal to the curve y = sinx at (0, 0) is ______.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Which of the following represent the slope of normal?


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×