Advertisements
Advertisements
प्रश्न
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
विकल्प
(0, 0)
(2, 16)
(3, 9)
none of these
उत्तर
None of these
\[\text { Let }\left( x_1 , y_1 \right)\text { be the required point.}\]
\[\text { Since, the point lies on the curve }, \]
\[\text { Hence }, y_1 = 12 x_1 - {x_1}^2 \]
\[\text { Now }, \]
\[y = 12x - x^2 \]
\[ \Rightarrow \frac{dy}{dx} = 12 - 2x\]
\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =12 - 2 x_1 \]
\[\text { Given }:\]
\[\text { Slope of the tangent }=0\]
\[12 - 2 x_1 = 0\]
\[ \Rightarrow x_1 = 6\]
\[\text { Now }, \]
\[ y_1 = 12 x_1 - {x_1}^2 = 72 - 36 = 36\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 6, 36 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
The equation of the normal to the curve y = sinx at (0, 0) is ______.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
Which of the following represent the slope of normal?
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.