Advertisements
Advertisements
प्रश्न
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
उत्तर १
Let (x1, y1) represent the required points.
The slope of the x-axis is 0.
Here,
\[2 a^2 y = x^3 - 3a x^2 \]
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence }, 2 a^2 y_1 = {x_1}^3 - 3a {x_1}^2 . . . \left( 1 \right)\]
\[\text { Now }, 2 a^2 y = x^3 - 3a x^2 \]
\[ \text { On differentiating both sides w.r.t.x, we get }\]
\[2 a^2 \frac{dy}{dx} = 3 x^2 - 6ax\]
\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2 - 6ax}{2 a^2}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{3 {x_1}^2 - 6a x_1}{2 a^2}\]
\[\text { Given }:\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text { Slope of the x-axis }\]
\[ \Rightarrow \frac{3 {x_1}^2 - 6a x_1}{2 a^2} = 0\]
\[ \Rightarrow 3 {x_1}^2 - 6a x_1 = 0\]
\[ \Rightarrow x_1 \left( 3 x_1 - 6a \right) = 0\]
\[ \Rightarrow x_1 = 0 \text { or }x_1 = 2a\]
\[\text { Also}, \]
\[2 a^2 y_1 = 0 \text { or }2 a^2 y_1 = 8 a^3 - 12 a^3 [\text { From eq. } (1)]\]
\[ \Rightarrow y_1 = 0 \text { or } y_1 = - 2a\]
\[\text { Thus, the required points are}\left( 0, 0 \right)\text { and }\left( 2a, - 2a \right).\]
उत्तर २
The given equation of the curve is
`2a^2y = x^3 - 3ax^2` ............(i)
Differentiating with respect to x , we get
`2a^2dy/dx = 3x^2 - 6ax`
∴ `"Slope" m_1 = dy/dx = 1/(2a^2)[3x^2 - 6ax]` ..........(ii)
Also ,
Slope `m_2 = dy/dx = tanθ`
= tan0° = 0 [∵ Slope is parallel to x-axis]
∴ m1 - m2
⇒ `1/(2a^2)[3x^2 - 6ax] = 0`
⇒ 3x[x - 2a] = 0
⇒ x = 0 or 2a
∴ From (i)
y = 0 or -2a
Thus , the required points are (0 , 0) or (2a , -2a)
APPEARS IN
संबंधित प्रश्न
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
Let `y = f(x)` be the equation of the curve, then equation of normal is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3