हिंदी

Find the Points on the Curve X 2 9 + Y 2 16 = 1 at Which the Tangent is Parallel to Y-axis ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?

योग

उत्तर

The slope of the y-axis is \[\infty\].

Let (x1y1) be the required point.

Given:

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence, }\frac{{x_1}^2}{9} + \frac{{y_1}^2}{16} = 1 . . . \left( 1 \right)\]

\[\frac{x^2}{9} + \frac{y^2}{16} = 1 \]

\[ \Rightarrow \frac{2x}{9} + \frac{2y}{16}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{y}{16}\frac{dy}{dx} = \frac{- x}{9}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 16x}{9y}\]

\[\text { Now,} \]

\[\text { Slope of the tangent at }\left( x, y \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- 16 x_1}{9 y_1}\]

\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text { Slope of they-axis [Given }]\]

\[ \therefore \frac{- 16 x_1}{9 y_1} = \infty \]

\[ \Rightarrow \frac{9 y_1}{- 16 x_1} = 0\]

\[ \Rightarrow y_1 = 0\]

\[ \Rightarrow \frac{{x_1}^2}{9} + 0 = 1 [\text { From eq.} (1)]\]

\[ \Rightarrow {x_1}^2 = 9\]

\[ \Rightarrow x_1 = \pm 3\]

\[\text { Thus, the required points are }\left( 3, 0 \right)\text { and }\left( - 3, 0 \right).\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.1 | Q 19.2 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Which of the following represent the slope of normal?


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×