हिंदी

Prove that the Curves X = Y2 and Xy = K Cut at Right Angles If 8k2 = 1. [Hint: Two Curves Intersect at Right Angle If the Tangents to the Curves at the Point of Intersection Are Perpendicular to Each Other.] - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]

उत्तर

The equations of the given curves are given as `x =  y^2 and xy = k`

Putting x = y2 in xy = k, we get:

This implies that we should have the product of the tangents as − 1.

Thus, the given two curves cut at right angles if the product of the slopes of their respective tangents at

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.3 [पृष्ठ २१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.3 | Q 23 | पृष्ठ २१३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The equation of normal to the curve y = tanx at (0, 0) is ______.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×