Advertisements
Advertisements
प्रश्न
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
विकल्प
(−3, −27)
(3, 9)
(7/2, 35/4)
(0, 0)
उत्तर
`(3, 9)`
Let (x1, y1) be the point where the given curve intersect the given line at the given angle.
\[\text { Since, the point lie on the curve } . \]
\[\text { Hence }, y_1 = 6 x_1 - {x_1}^2 \]
\[\text { Now,} y = 6x - x^2 \]
\[ \Rightarrow \frac{dy}{dx} = 6 - 2x\]
\[ \Rightarrow m_1 = 6 - 2 x_1 \]
\[\text { and }\]
\[x + y = 0\]
\[ \Rightarrow 1 + \frac{dy}{dx} = 0 \]
\[ \Rightarrow \frac{dy}{dx} = - 1\]
\[ \Rightarrow m_2 = - 1\]
\[\text { It is given that the angle between them is }\frac{\pi}{4}.\]
\[ \therefore \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]
\[ \Rightarrow \tan \frac{\pi}{4} = \left| \frac{6 - 2 x_1 + 1}{1 - 6 + 2 x_1} \right|\]
\[ \Rightarrow 1 = \left| \frac{7 - 2 x_1}{2 x_1 - 5} \right|\]
\[ \Rightarrow \frac{7 - 2 x_1}{2 x_1 - 5} = \pm 1\]
\[ \Rightarrow \frac{7 - 2 x_1}{2 x_1 - 5} = 1 \ or\frac{7 - 2 x_1}{2 x_1 - 5}=-1\]
\[ \Rightarrow 7 - 2 x_1 = 2 x_1 - 5 \ or \ 7 - 2 x_1 = - 2 x_1 + 5\]
\[ \Rightarrow 4 x_1 = 12 \ or \ 2 = 0 (\text {It is not true }.)\]
\[ \Rightarrow x_1 = 3\]
\[\text { and }\]
\[ y_1 = 6 x_1 - {x_1}^2 = 18 - 9 = 9\]
\[\therefore\left( x_1 , y_1 \right)=\left( 3, 9 \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
Which of the following represent the slope of normal?
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.