हिंदी

Find the Points on the Curve Y = `4x^3 - 3x + 5` at Which the Equation of the Tangent is Parallel to the X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.

उत्तर

`y = 4x^3 - 3x + 5 `...(i)

`dy/dx = 12x^2 - 3`

Given that lines is parallel to x-a xis

`:. dy/dx = 0`

`12x^2 - 3 = 0`

`12x^2 = 3`

`x^2 = 1/4`

`x= +- 1/2`

Put `x = +- 1/2` in equation (i)

`x = 1/2  "then " y = 4 (1/2)^3 - 3(1/2) + 5 = 4`

`:. "Point"(1/2, 4)`

when `x = (-1)/2`  then `y = 4 ((-1)/(2)) - 3((-1)/2) + 5 = 6`

:. Point (x,y) = `(1/2, 4)` and `((-1)/2, 6)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×