हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point Y = X4 − Bx3 + 13x2 − 10x + 5 at (0, 5) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?

उत्तर

\[y= x^4 - b x^3 + 13 x^2 - 10x + 5\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[\frac{dy}{dx} = 4 x^3 - 3b x^2 + 26x - 10\]

\[\text { Slope of tangent},m= \left( \frac{dy}{dx} \right)_\left( 0, 5 \right) =-10\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( 0, 5 \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 5 = - 10\left( x - 0 \right)\]

\[ \Rightarrow y - 5 = - 10x\]

\[ \Rightarrow y + 10x - 5 = 0\]

\[\text { Equation of normal is},\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 5 = \frac{1}{10} \left( x - 0 \right)\]

\[ \Rightarrow 10y - 50 = x\]

\[ \Rightarrow x - 10y + 50 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 3.01 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


At (0, 0) the curve y = x3 + x


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×