हिंदी

Write the Coordinates of the Point at Which the Tangent to the Curve Y = 2x2 − X + 1 is Parallel to the Line Y = 3x + 9 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?

उत्तर

Let (x1, y1) be the required point.
Slope of the given line = 3

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence, } y_1 = 2 {x_1}^2 - x_1 + 1 . . . \left( 1 \right)\]

\[\text { Now, }y = 2 x^2 - x + 1 \]

\[ \therefore \frac{dy}{dx} = 4x - 1\]

\[\text { Now,} \]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =4 x_1 - 1\]

\[\text { Given }:\]

\[\text { Slope of the tangent = Slope of line }\]

\[ \therefore 4 x_1 - 1 = 3\]

\[ \Rightarrow x_1 = 1\]

\[\text { From (1), we get }\]

\[ y_1 = 2 - 1 + 1 = 2\]

\[ \therefore \left( x_1 , y_1 \right) = \left( 1, 2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.4 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.4 | Q 16 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×