हिंदी

Prove that the Curves Xy = 4 and X2 + Y2 = 8 Touch Each Other ? - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?

उत्तर

\[\text { Given }: \]

\[xy = 4 . . . . . \left( 1 \right)\]

\[ x^2 + y^2 = 8 . . . . . \left( 2 \right)\]

\[\text { From } \left( 1 \right), \text { we get }\]

\[x = \frac{4}{y}\]

\[\text { Substituting } x = \frac{4}{y} \text { in }\left( 2 \right), \text { we get }\]

\[ \left( \frac{4}{y} \right)^2 + y^2 = 8\]

\[ \Rightarrow \frac{16}{y^2} + y^2 = 8\]

\[ \Rightarrow 16 + y^4 = 8 y^2 \]

\[ \Rightarrow y^4 - 8 y^2 + 16 = 0\]

\[ \Rightarrow \left( y^2 - 4 \right)^2 = 0\]

\[ \Rightarrow y^2 - 4 = 0\]

\[ \Rightarrow y^2 = 4\]

\[ \Rightarrow y = \pm 2\]

\[\text { Substituting }y = \pm 2, \text { we get }\]

\[x = \pm 2\]

\[\text { So, the given curves touch each other at two points } \left( 2, 2 \right) \text { and } \left( - 2, - 2 \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.3 | Q 6 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×