Advertisements
Advertisements
प्रश्न
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
उत्तर
\[\text { Given }: \]
\[2x = y^2 . . . \left( 1 \right)\]
\[2xy = k . . . \left( 2 \right)\]
\[\text { From (1) and (2), we get }\]
\[ y^3 = k\]
\[ \Rightarrow y = k^\frac{1}{3} \]
\[\text { From (1), we get }\]
\[2x = k^\frac{2}{3} \]
\[ \Rightarrow x = \frac{k^\frac{2}{3}}{2}\]
\[\text { On differentiating (1) w.r.t.x,we get }\]
\[2 = 2y\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{y}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( \frac{k^\frac{2}{3}}{2}, k^\frac{1}{3} \right) = \frac{1}{k^\frac{1}{3}} = k^\frac{- 1}{3} \]
\[\text { On differentiating (2) w.r.t.x,we get }\]
\[2x\frac{dy}{dx} + 2y = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( \frac{k^\frac{2}{3}}{2}, k^\frac{1}{3} \right) = \frac{- k^\frac{1}{3}}{\left( \frac{k^\frac{2}{3}}{2} \right)} = - 2 k^\frac{- 1}{3} \]
\[\text { It is given that the curves intersect orthogonally }.\]
\[ \therefore m_1 \times m_2 = - 1\]
\[ \Rightarrow k^\frac{- 1}{3} \times - 2 k^\frac{- 1}{3} = - 1\]
\[ \Rightarrow 2 k^\frac{- 2}{3} = 1\]
\[ \Rightarrow k^\frac{- 2}{3} = \frac{1}{2}\]
\[ \Rightarrow k^\frac{2}{3} = 2\]
\[\text { Cubing on both sides, we get }\]
\[ k^2 = 8\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3