Advertisements
Advertisements
प्रश्न
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
उत्तर
\[\text { Given }: \]
\[4x = y^2 . . . \left( 1 \right)\]
\[4xy = k . . . \left( 2 \right)\]
\[\text { From (1) and (2), we get }\]
\[ y^3 = k\]
\[ \Rightarrow y = k^\frac{1}{3} \]
\[\text { From (1), we get }\]
\[4x = k^\frac{2}{3} \]
\[ \Rightarrow x = \frac{k^\frac{2}{3}}{4}\]
\[\text { On differentiating (1) w.r.t.x, we get }\]
\[4 = 2y\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2}{y}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( \frac{k^\frac{2}{3}}{4}, k^\frac{1}{3} \right) = \frac{2}{k^\frac{1}{3}} = 2 k^\frac{- 1}{3} \]
\[\text { On differentiating (2) w.r.t.x, we get }\]
\[4x\frac{dy}{dx} + 4y = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( \frac{k^\frac{2}{3}}{4}, k^\frac{1}{3} \right) = \frac{- k^\frac{1}{3}}{\left( \frac{k^\frac{2}{3}}{4} \right)} = - 4 k^\frac{- 1}{3} \]
\[\text { It is given that the curves intersect at right angles }.\]
\[ \therefore m_1 \times m_2 = - 1\]
\[ \Rightarrow 2 k^\frac{- 1}{3} \times - 4 k^\frac{- 1}{3} = - 1\]
\[ \Rightarrow 8 k^\frac{- 2}{3} = 1\]
\[ \Rightarrow k^\frac{- 2}{3} = \frac{1}{8}\]
\[ \Rightarrow k^\frac{2}{3} = 8\]
\[\text { Cubing on both sides, we get }\]
\[ k^2 = 512\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.