हिंदी

Find the Angle of Intersection of the Following Curve Y = 4 − X2 and Y = X2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?

उत्तर

\[\text { Given curves are},\]

\[y = 4 - x^2 . . . . . \left( 1 \right)\]

\[y = x^2 . . . . . \left( 2 \right)\]

\[\text { From ( 1)and (2), we get }\]

\[4 - x^2 = x^2 \]

\[ \Rightarrow 2 x^2 = 4\]

\[ \Rightarrow x^2 = 2\]

\[ \Rightarrow x = \pm \sqrt{2}\]

\[\text { Substituting the values of x in (2), we get }, \]

\[ \Rightarrow y = 2\]

\[ \Rightarrow \left( x, y \right)=\left( \sqrt{2},2 \right),\left( - \sqrt{2}, 2 \right)\]

\[\text{ Differentiating (1) w.r.t.x, }\]

\[\frac{dy}{dx} = - 2x . . . . . \left( 3 \right)\]

\[\text { Differentiating (2) w.r.t.x },\]

\[\frac{dy}{dx} = 2x . . . . . \left( 4 \right)\]

\[\text { Case } 1:\left( x, y \right)=\left( \sqrt{2}, 2 \right)\]

\[\text { From } \left( 3 \right), \text { we have,} m_1 = - 2\sqrt{2}\]

\[\text { From} \left( 4 \right) \text { we have }, m_2 = 2\sqrt{2}\]

\[\text { Now }, \]

\[\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{- 2\sqrt{2} - 2\sqrt{2}}{1 - 8} \right| = \frac{4\sqrt{2}}{7}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{4\sqrt{2}}{7} \right)\]

\[\text { Case } 1:\left( x, y \right)=\left( -\sqrt{2}, 2 \right)\]

\[\text { From } \left( 3 \right), \text { we have }, m_1 = 2\sqrt{2}\]

\[\text { From } \left( 4 \right) \text { we have }, m_2 = - 2\sqrt{2}\]

\[\text { Now,} \]

\[\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{2\sqrt{2} + 2\sqrt{2}}{1 - 8} \right| = \frac{4\sqrt{2}}{7}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{4\sqrt{2}}{7} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.3 | Q 1.9 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Which of the following represent the slope of normal?


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×