हिंदी

Show that the Following Curve Intersect Orthogonally at the Indicated Point Y2 = 8x and 2x2 + Y2 = 10 at ( 1 , 2 √ 2 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?

योग

उत्तर

\[y^2 = 8x . . . \left( 1 \right)\]

\[2 x^2 + y^2 = 10 . . . \left( 2 \right)\]

\[\text { Given point is }\left( 1, 2\sqrt{2} \right)\]

\[\text { Differentiating (1) w.r.t.x,}\]

\[2y\frac{dy}{dx} = 8\]

\[ \Rightarrow \frac{dy}{dx} = \frac{4}{y}\]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 2\sqrt{2} \right) = \frac{4}{2\sqrt{2}} = \sqrt{2}\]

\[\text { Differentiating (2) w.r.t.x,}\]

\[4x + 2y\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 2x}{y}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 2\sqrt{2} \right) = \frac{- 2}{2\sqrt{2}} = \frac{- 1}{\sqrt{2}}\]

\[\text { Since,} m_1 \times m_2 = - 1\]

Hence,  the given curves intersect orthogonally at the given point.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.3 | Q 3.3 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The curves y = aex and y = be−x cut orthogonally, if ___________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Which of the following represent the slope of normal?


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×